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ABSTRACT
Digital twins of complex systems are operated by stakeholders from
different domains, who typically do not work in the same language.
This problem is exacerbated in digital twins where domain-specific
representations are required to convey actionable results, such as in
cyber-biophysical systems. Particularly, in controlled environment
agriculture, agronomists devise seasonal production plans and run
simulations to optimize the system in terms of crop phenology
while growers maintain crops and ensure their optimal growth
by assessing crop morphology. To breach this gap, we consider
an optimization problem to reconcile the different users’ points
of views. We propose a modeling methodology that bridges the
gap between crop phenology and morphology, generating visual
representations of crops based on simulated phenological charac-
teristics. To demonstrate the validity of our proposed methodology
for digital twins in smart farming, we apply our approach to two
case studies: a strawberry vertical farm and a smart canola field.

KEYWORDS
cyber-biophysical systems, modeling methodology, digital twins,
simulation, multi-paradigm modeling, smart farming

1 INTRODUCTION
Advances in computing technologies, combined with the digitiza-
tion of various domains such as manufacturing [33], avionics [36],
and logistics [16], have increased the prevalence of cyber-physical
systems. In agriculture, digitization has the potential to make a
significant impact through smart farming technologies [2], such as
vertical farming. Vertical farming places crops in a fully controlled
environment, known as controlled environment agriculture (CEA),
to optimize yields, thereby creating a cyber-biophysical system
(CBPS) [11]. The operation of such systems typically relies on the
expertise of multiple domain specialists, each responsible for differ-
ent aspects of the system. For example, in CEA, a grower ensures
the crops grow healthily under the given environmental conditions,
while an agronomist oversees the overall production schedule and
environmental planning.

Integrating digital twin capabilities into CBPS allows operators
of CEA systems to utilize services like what-if analyses, predictions,
and visualizations to optimize production in ways that are both
economically viable and aligned with business goals [11]. However,
it is crucial for the CBPS to present key performance indicators
(KPIs) to its stakeholders at various levels of abstraction to provide
actionable insights. The digital twin must accurately represent
the crop’s phenology and morphology—the developmental and
architectural growth dynamics—while remaining consistent with

the farm’s conditions and providing valuable information to both
agronomists and growers.

The goal of this work is to enable the prescriptive capabilities of
digital twins via simulation of future states to improve the stake-
holders’ decision making process. We propose a model transforma-
tion chain to visualize the crop morphology via its phenological
state by employing domain-specific languages to refine an abstract
morphological state into a concrete morphological 3D representa-
tion. By exploring the design space of possible crop morphologies
and optimizing a range of morphological parameters, we generate
a morphological representation consistent with its phenological
development, enabling CEA stakeholders to assess the impact of en-
vironmental factors on morphology. The main contributions of this
paper are: (i) a domain-specific language defining crop morphology
using non-destructive measurements; (ii) an optimization-based
model transformation to refine the output of a crop simulator into
a consistent visual representation of the crop morphology; (iii) a
methodology to accommodate visualizations for the different points
of view of the digital twin stakeholders We validate our approach
on two case studies: a strawberry vertical farm and a smart canola
field. The results show that our methodology is applicable and
yields actionable results for smart farming stakeholders.

In Section 2, we provide the background information and intro-
duce our running example. In Section 3, we outline our approach
and explain how we derive the abstract morphological state. In
Section 4, we detail the process of refining the abstract state into a
concrete morphological state and describe how to generate its visu-
alization. In Section 5, we validate our approach through two case
studies. We then discuss related works in Section 6 and conclude
in Section 7.

2 BACKGROUND
In this section, we present a running example of the challenges
encountered when operating a CBPS in a CEA context. We then
define key concepts and techniques that are used in the remaining
sections.

2.1 Running example: a digital twin for CEA
As a running example, let us consider the CEA of tomatoes with
two stakeholders: an agronomist and a grower. CEA systems are
complex to operate and involve the use of multiple cyber-physical
systems to regulate ventilation, irrigation, radiation, chemical distri-
bution, and pressure within the environment [32]. By maintaining
direct control on the environment, agronomists and growers can
adapt the growth conditions of crops to satisfy specific business
needs. For instance, a tomato nursery aims to nurture and sell
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Figure 1: Prescriptive digital twin conceptual framework,
adapted from [38]

tomato seedlings, whereas a tomato farm wants to grow the most
marketable crop yield.

To operate the CEA system, the agronomist plans environmental
recipes which define a production calendar detailing the environ-
mental conditions necessary to achieve the desired yield outcome.
The agronomist chooses the recipes based on their tacit knowledge
and the pheonological data available for specific tomato cultivars,
such as the density of roots or chlorophyll content of leaves. Most
of this data needs to be collected in a lab by destroying crops, which
reduces potential production and removes longitudinal data points
from the production cycle. Recipes typically do not exploit the full
range of possible environmental conditions of the CEA system,
as uncertainty brought by experimental recipes may lead to large
discrepancies between the expected and produced yield.

While the agronomist handles the CEA production plan, the
grower ensures that the tomato crops receive the proper care through-
out production. For example, the grower ensures that irrigation
remains adequate, that the tomato crops are in good health, and
prunes organs contributing biomass that negatively impacts crop
yield. Due to the inherent nature of crop development and the
added system inertia caused by mass crop production, the grower
must adjust the growing conditions daily, slightly deviating from
the recipes provided by the agronomist. The grower relies on their
tacit knowledge to visually inspect the crop and act upon it.

A digital twin for this farm would allow it to improve its effi-
ciency in terms of yield (fruit production) and energy consumption
(cost). Consider the components of the prescriptive digital twin (in-
spired from [38]) presented in Figure 1. In this paper, we focus on
the crop simulator (in green) to provide agronomists and growers a
tool to evaluate the impact of environmental configurations on the
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Figure 2: Knowledge gap between agronomist and grower

phenological and morphological development of the crop based on
the analysis of simulation results.

The operational complexity of CEA systems makes the inter-
actions between the agronomist and grower crucial to achieving
production goals. Both experts must work together to iterate on
a production plan that meets business expectations and ensures
healthy crop development. To achieve this, those domain experts
rely on simulation-based decision support systems [4] to explore
the state space of the CEA system and provide recommendations
for its operations. Typically, such systems provide support for the
agronomist via the simulation of phenological crop characteristics,
such as photosynthesis and evapotranspiration, but fail to support
the grower with a model of the tomato morphology. While tomato
morphological models exist, their construction and usage is often
decoupled from the underlying phenological phenomena that char-
acterize crop growth [14]. By bridging the gap between the crop
phenology and its morphology, we aim to provide a consistent
multi-view representation of the crop to support the management
decisions of smart agriculture system operators. Figure 2 highlights
the knowledge gap our methodology aims to bridge between do-
main experts.

Our methodology aims to provide the visualization service nec-
essary for the engineering of a smart farming digital twin. Bor-
rowing definitions from a recent conceptual framework on the
topic [38], we aim to engineer a prescriptive digital twin to provide
agronomists and growers a tool to evaluate the impact of envi-
ronmental configurations on the phenological and morphological
development of the crop based on the analysis of simulation results.

2.2 Crop Phenology
Definition 1. Crop phenology characterizes the underlying func-
tions regulating crop development in regards to their environment.
For example, crop photosynthetic activity and biomass allocation
are phenological characteristics with dynamics that highly vary
depending on crop genetics and growth environment. Agronomists
often rely on specific crop phenological characteristics to categorize
crop development into vegetative and reproductive stages. Measur-
ing crop phenological phenomena involves laborious, expensive,
and often destructive methods [9].
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Models of crop phenology capture the underlying dynamics of
crop growth in relation to its environment. Typically, such models
comprise modules for the computation photosynthetic activity,
soil nutrient exchange, evapotranspiration, and farming operations
affecting the crop. These models are used by agronomists to predict
the impact of environmental recipes on phenological crop attributes
such as the weight of organs, the distribution of chemicals within
the crop, and water evapotranspired. Since the dynamics of the
crop continuously evolve through time, phenology is described
through systems of differential equations. Due to the complexity of
their constituent parts, there are no analytical solutions that can
model the entirety of crop phenology and its factors, and only a few
general solutions exist for very specific characteristics [41]. Thus,
simulation is often employed to approximate model results. For
instance, the TOMGRO simulation model [21] involves 21 constants
to characterize specific tomato cultivars. Typically, most model
parameters must be calibrated through destructive measurements,
killing the crop.

By describing the evolution of underlying crop functions across
time, these models present actionable results to the agronomist via
graphs and provide a basis for optimizing production plans. The
agronomist can simulate different recipes and assess the simulated
system traces to find optimal growth conditions. However, pheno-
logical models fail to provide actionable insights to the grower since
their domain expertise lies on the visual assessment of physical
crop characteristics, not on the understanding of underlying devel-
opmental phenomena. Thus, while models of phenology provide
actionable results to the agronomist, there is a need to model the
morphology to provide actionable results to the grower.

2.3 Crop Morphology
Definition 2. Crop morphology defines the architectural and
structural development of the crop, and includes functions such
as branching patterns, and organ size and shape. Typically, most
morphological characteristics do not necessitate destructive mea-
surements, as it is possible to count the number of organs and
measure their dimensions. It is the most appropriate level of ab-
straction for non-agronomists.

Models of crop morphology aim to capture the topology and re-
lations between crop organs. They include cultivar-specific param-
eters, such as branch angle or reproduction thresholds to capture
organogenesis and branching patterns. Also known as functional-
structural plant models [39], they represent the physical charac-
teristics of the crop and are useful for growers and agronomists to
assess the evolution of the crop within their domain of expertise.
Compared to crop phenology models that simulate underlying crop
functions, morphological models simulate measurable and non-
destructive crop attributes, which can be observed to characterize
crop genotypes [7]. Following our running example, morphological
models of tomatoes have been developed to infer the development
of the crop structure via greenhouse images [27].

2.4 L-System
Definition 3. The L-system formalism [26] models the growth
processes of biological organisms, with an emphasis on crop devel-
opment. It provides a framework for describing complex develop-
ment patterns through the use of formal grammars and iterative,
parallel rewriting rules and is a popular simulation formalism for
crop morphology. Many variations of the formalism exist, but we
will focus on parametric L-systems.

A parametric L-system is described as a tuple 𝐺 = ⟨Σ, 𝜔, 𝑃, 𝐼 ⟩
where Σ contains the symbol of an alphabet,𝜔 is the axiom, 𝑃 is a set
of parameterized production rules and 𝐼 a set of interpretation rules.
Starting from the axiom 𝜔 , the evolution of the system is simulated
by repeatedly computing the new parameters and applying the
production rules on the previous iteration string. Interpretation
rules define how to interpret the derived L-System string according
to the rules of turtle graphics [31].

2.5 Turtle Graphics
Turtle graphics [3] is a method for visually interpreting and repre-
senting strings generated by L-systems. The method sets a cursor,
or so-called turtle, on a blank canvas that interprets each symbol
as specified by the L-system interpretation rules to draw the ap-
propriate shapes. The turtle reads the string iteratively, and when
a separate context is found in the interpreted string, a new turtle
starts drawing in parallel. This results in the efficient interpreta-
tion and rendering of L-System strings, bridging the gap between
grammar and graphics.

3 MODEL TRANSFORMATION CHAIN
We first present the overall architecture of our transformation chain,
then describe how to produce a phenological state from a model
of crop phenology. Finally, we propose an abstract morphological
state and describe how to obtain it from a phenological state.

3.1 Overall architecture
The prescriptive digital twin of a smart farming system, as shown
on Figure 1, must represent the crop and simulate its possible fu-
ture states to provide intervention decisions to operators. Models
of phenology enable the digital twin to predict the impact of the en-
vironment on the phenological characteristics of the crop but fail to
provide information on the crop structure. In contrast, morphologi-
cal models fail to capture the impact of environmental conditions
on the crop. Thus, we propose a methodology that bridges the gap
between different aspects of crop growth.

To bridge the gap between crop representations, our architecture
sequentially transforms models of different formalisms to achieve
the graphical representation of a crop from a given set of growing
conditions. The conditions become the input of a crop simulator,
which outputs the phenological state of the crop. This state is then
mapped to an abstract morphological state using a model transfor-
mation (i.e., translation), which gets refined into a concrete morpho-
logical state through a multi-object optimization-based transforma-
tion. From the optimal concrete state, we generate an animation
of crop growth using L-Systems to convey the graphical results.
Figure 3 summarizes this transformation chain.
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Figure 3: Methodology for the generation of crop phenology from environmental recipes

The phenological and morphological models capture specific,
actionable KPIs for the agronomist and grower, which would in-
clude predicted yield and branching patterns in the case of a tomato
crop. However, the different models typically do not work jointly to
provide a consistent multi-view of the system. As such, the models
may conflict in their results by projecting different organogene-
sis patterns or by providing mismatching estimates of the same
KPI, such as leaf area index [8]. By coupling the morphological
model to its phenological counterpart through an abstraction of
crop morphology, we can present consistent results at multiple
levels of abstraction to the grower and agronomist while producing
specific KPIs that guide the farming system operation. In the case
of a tomato greenhouse, this would include information about the
evapotranspiration of the crop, its weight, and its height.

3.2 Producing the phenological state
Phenology is typically modeled as a dynamical system through dif-
ferential equations, which describe the system continuously values.
However, we want to capture the state of development of the crop
at discrete intervals to generate results at specific points in time.
This can either be done through deriving an analytical solution to
the system, which is unfeasible for most biological systems due to
their complexity, or by using simulation to approximate the solu-
tion using numerical methods [17]. The simulator outputs a trace
of model variables that are used to represent the phenological state
of the crop at specific points in time.

3.2.1 Crop simulator. Simulation models of crop phenology sim-
ulate the continuous growth of the crop based on its environ-
ment. Such models incorporate modules that compute photosyn-
thesis [42], water and chemical absorption [29], and the effects of
temperature on crop development [25], and output crop growth
phenological characteristics such as crop dry weight, evapotranspi-
ration, and relative growth rate [22]. Since crop simulation models
vary in complexity and implementation, the representations of phe-
nological states vary. For the interested readers, we refer to a recent
survey on crop yield models [13].

3.2.2 Phenological state representation. The phenological state en-
capsulates the results of the crop simulator, which can take many
forms, such as an object or a time series of properties. We export
the simulator output to a CSV file to integrate the simulation results
with our optimization algorithm. This is done automatically by the
crop simulator, but as simulation models vary in implementation,
the file may need to be filled out manually by the agronomist. Each
row of the file represents the phenology of the crop at every sim-
ulation time step, typically a day, and contains information about
the crop. For the tomato example, the file might contain the age
and weight of organs. The translation then uses the file to generate
the abstract morphological state.

3.3 Generating the abstract morphological state
As crop simulation models typically aim to assess final crop yield,
they often do not accurately capture the organogenesis patterns of
every organ and their counts and are often unable to characterize
the crop morphology. Thus, to bridge the gap between phenolog-
ical and morphological characteristics, we generate an abstract
morphological state from the simulated crop characteristics. To do
this, we employ a user-defined translation heuristic that maps the
phenological state to a concrete abstract morphological state based
on the available phenological state representations output by the
crop simulator. Certain phenological models directly compute the
counts of organs of interest, which are directly translatable to an
abstract morphological state. However, this is not the case for every
phenological model, as relations between phenological attributes
and observable morphological attributes must be defined, such as a
mapping from organ weight to organ count.

3.3.1 Abstract morphological state. The abstract morphological
state is an intermediary representation between the phenology
and morphology of the crop that bridges the gap between mod-
els relying on destructive measurements such as crop weight and
non-destructive measurements of crop organ counts. If we take
the tomato example, the abstract morphological state describes the
leaf count, tomato fruits, length of the main stem, and its age. By
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Figure 4: Abstract Morphological State Metamodel

introducing this abstract state between models relying on destruc-
tive and non-destructive measurements, we aim to characterize
different crop genotypes by calibration of the translation heuristic.

The abstract state is implemented with a domain-specific lan-
guage that captures the crop-specific parameters used for the mor-
phology refinement. The language relies on user-defined crop mod-
ules that characterize the metamodel of the abstract morphological
state, comprised of organ types and simulation parameters as shown
on Figure 4. The metamodel of the abstract morphological state re-
lies on crop-specific organs and parameters that must be defined for
individual crop species within a Java object loaded by the language.
We provide such examples in the case studies. The abstract state
is then refined through our optimization-based transformation to
generate the appropriate concrete morphological state.

3.3.2 Translation. The translation heuristic maps the output of the
crop simulator to the abstract morphological state and is derived
by the agronomist based on their knowledge and experience with
specific crop cultivars. As crop growth is highly sensitive to its
environment, and as developmental characteristics depend on the
crop cultivar and species, this heuristic function must be adjusted to
each farming operation. To do this, agronomists must experiment
and derive their parameters by collecting destructive crop measure-
ments, i.e., measurements that kill the crop, such as vegetative dry
weight, to correlate organ weight to organ count. If available, the
agronomist can use a simulator to estimate destructive crop mea-
surements. Once this mapping between organ weight and count
is defined, we translate the phenological state to an abstract mor-
phological state. The translation operation can be automated via an
interface linking the outputs of the crop simulator with the abstract
morphological state language. As agronomists are not computer
experts, they can manually apply the translation using spreadsheet
tools such as Microsoft Excel, from which they can manually input
the abstract state using our domain-specific language.

4 MORPHOLOGY REFINEMENT AND
GROWTH REPRESENTATION

Given the large state space of the morphological model, which re-
sults from the numerous possible varying parameters, it is essential
to explore this space efficiently to refine the abstract state into its
concrete form. To achieve this, we model the space exploration as
a multi-objective optimization problem and solve it using a genetic

S +[ S [ SF ] [ SL ] ] − [ S ]

Figure 5: Example tomato L-System interpretation String. S
denotes a stalk, +/- a rotation, F a fruit, and L a leaf.

algorithm. Through this algorithm, we derive the parameters of
the concrete morphological crop model, leading to the creation of a
concrete morphological state, enabling the visualization of the crop
morphology. Multi-objective genetic algorithms are particularly
effective because they can identify Pareto-optimal solutions. From
these solutions, we select the optimal one using a user-defined
selection heuristic. This heuristic acts as a tie-breaker among the
solutions, prioritizing specific crop organs.

4.1 Morphology Refinement
To refine the abstractmorphological state, we employ an optimization-
based model transformation that uses a crop-specific L-System
model to simulate possible morphological configurations of the
crop and select which parameters lead to an optimal representation
of the crop morphology. The optimal parameters of our morpholog-
ical model are selected with a user-defined heuristic that prioritizes
correct organ counts for specific organs.

4.1.1 Concrete Morphological state. The concrete morphological
state of the crop is the result of a parametric L-system model, which
characterizes the structural and topological development of the crop
by applying parallel string rewriting operations on a derivative
string. This derivative string is then transformed to an interpreta-
tion string, as shown on Figure 5, and interpreted by the turtle to
visualize the crop. Our optimization-based transformation derives
the parameters that generate a concrete morphological state closest
to the specified abstract morphological state.

4.1.2 Crop Specification. L-system models for different crops have
different nomenclatures for organ names and types. To define the
abstract morphological state of any crop, the DSL relies on crop-
specific modules that define a mapping between the interpreted
L-System string and the crop organs. The mapping pairs an organ
with a regular expression used to extract crop organ counts from the
string, which we use to optimize the L-system model parameters.
For instance, the interpreted string of a tomato might contain the
character F to represent fruits, which we count using a regular
expression.

4.1.3 Optimization Problem. To find the optimal concrete mor-
phological state that characterizes the abstract state, we pose a
multi-objective optimization problem where we minimize the dif-
ference between the generated organ count and the target specified
by the DSL. That is, given a tomato crop with organs 𝑜𝑖 ∈ 𝑂 such
as 𝑜𝑙𝑒𝑎𝑓 and 𝑜 𝑓 𝑟𝑢𝑖𝑡 and their respective count 𝑛𝑖 , and𝐶𝑖 (𝑆 𝑗 ) a func-
tion evaluating the count of organ 𝑜𝑖 for the candidate solution
𝑆 𝑗 for parameters 𝑥𝑣𝑒𝑔, 𝑥𝑟𝑒𝑝 ∈ 𝑋 , we define objective functions 𝐹𝑖
counting the distance between the target organ count and candidate
solution:

𝐹𝑖 (𝑥 𝑗 ) = |𝜆𝑖𝐶𝑖 (𝑆 𝑗 ) − 𝑛𝑖 | (1)
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As crop morphological models may not simulate precise organ
counts but rather the branching structure, we scale the count of or-
gans 𝑖 for a solution with parameter 𝜆𝑖 . This way, 𝜆 can be adjusted
to minimize the impact of an over or under-estimation of organ
counts by the morphological model on the family of solutions.

We pose the following multi-objective optimization problem for
each objective 𝐹𝑖 :

∀𝑖 ∈ 𝑜𝑖 min
𝑥 𝑗 ∈𝑋

𝐹𝑖 (𝑥 𝑗 ) (2)

Our goal is to minimize the distance between the count of each
generated organ and the target specified by the abstract state. To
solve our multi-objective optimization problem, we resort to genetic
algorithms.

4.1.4 Genetic Algorithm. We use the NSGA-III algorithm to solve
our optimization problem [12]. This choice is motivated by the
ability of NSGA-III to tackle multiple objectives with large amounts
of parameters. We promptly illustrate the NSGA-III algorithm using
the tomato example.

The tomato crop module provided to the DSL specifies which
parameters need to be optimized, alongwith their constraints, if any.
For example, we may wish to optimize parameters 𝑥𝑣𝑒𝑔 and 𝑥𝑟𝑒𝑝 ,
the vegetative and reproductive plastochron, to obtain a count for
each organ 𝑜𝑖 ∈ {𝑓 𝑟𝑢𝑖𝑡, 𝑙𝑒𝑎𝑓 }.

The algorithm first encodes our parameters into random candi-
date vectors ⟨𝑥𝑣𝑒𝑔, 𝑥𝑟𝑒𝑝 ⟩ ∈ 𝑋 . To bind the space of possible vector
values, each parameter is discretized and encoded as a binary string.
Then, the solution space is divided 𝑝 times for each of our𝑀 objec-
tives to create 𝐻 =

(𝑀+𝑝−1
𝑝

)
reference points on an𝑀-dimensional

normalized hyperplane. The algorithm then normalizes our solu-
tions into the normalized hyperplane space. We refer the reader
to [12] for details on this normalization and hyperplane construc-
tion. To maintain a diverse set of solutions, we set the number of
divisions to 𝑝 = 15.

Next, the algorithm selects 𝑘 points closest to the 𝐻 reference
points. When a point is closest to multiple reference points, e.g., 𝑘 <

𝐻 , random candidates are randomly generated to be in the neighbor-
hood of the most referenced point until a population 𝑃1 is formed.
From this population, an offspring population 𝑄1 is created by
applying a two-point crossover operation and a mutation opera-
tor, each with a 50% chance. The mutation randomly increases or
decreases the value of the encoded binary string with a 50% chance.

Once the population 𝑃1 ∪𝑄1 is obtained, 𝑁 points are selected
using a fitness function to form the next population 𝑃2. To do
this, the morphology of every candidate is simulated using the
morphological model, and evaluated by summing each objective
function 𝐹𝑖 , which we minimize. To converge to an optimal solution,
the algorithm iterates on the population ℎ times, starting again
from the construction of the hyperplane. The output of the genetic
algorithm is a set of Pareto-optimal solutions 𝑆 , containing optimal
solution vectors ⟨𝑥𝑣𝑒𝑔, 𝑥𝑟𝑒𝑝 ⟩𝑗 to our optimization problem, which
we reduce to a single optimal solution using a selection heuristic.

4.1.5 Selection Heuristic. To prune our solution set, we apply a
crop-specific heuristic function that prioritizes certain organs over
others. Continuing with our tomato example, we may select a solu-
tion vector ⟨𝑥𝑣𝑒𝑔, 𝑥𝑟𝑒𝑝 ⟩ that produces an optimal number of fruits

over an optimal number of leaves. The agronomist typically chooses
this heuristic function according to his knowledge of the crop cul-
tivar. Formally, the function applies some preference over certain
organ counts, that is, for organs 𝑘1, 𝑘2 ∈ 𝑂 where 𝑘1 is preferred
over 𝑘2:

min
𝑥∗∈𝑋

𝐹𝑘1 (𝑥
∗) ≤ min

𝑥∗∈𝑋
𝐹𝑘2 (𝑥

∗) (3)

After applying our selection heuristic, we obtain the optimal set
of morphological parameters from which we generate the visual-
ization.

4.1.6 Implementation. The abstract morphological state is refined
to a concrete state through an XText domain-specific language that
interfaces with the L-System simulator VLab [23] through a Java
API. The DSL represents the abstract morphological state via a
grammar comprising the crop age and organ keywords specified by
the CropSpecificParameters (see Figure 4). Once the language
input file is defined, we refine the abstract state using our transfor-
mation, which uses the NSGA-III algorithm provided by the Java
MOEA framework [18] to explore the design space.

To interfacewith VLab, we implemented an interface that spawns
processes with the necessary context to call the L-System simulator
programmatically. Every time VLab is called, a file containing mor-
phological parameters is created, and when the simulation ends,
we save either the resultant derivation or interpretation string to
a file, depending on the specified objectives. The objectives define
pairs of organ names and regular expressions that are used to ex-
tract specific organ counts from the generated string. The choice to
extract organs from either the derivation or interpretation string
is provided since the concrete morphological states are arbitrarily
complex, and defining regular expressions for one string type may
be easier.

4.2 Crop Vizualisation
When an optimal concrete morphological state has been found, we
present it graphically in two possible ways: either by visualizing
the final resulting crop and its evolution as a timeline of simulation
snapshots, from which we generate an animation. The default inter-
pretation of the L-System string generates the final state of the crop
by interpreting the entire string using turtle graphics. Depending
on the implementation of the morphological model, snapshots of
the morphological states can be replayed to a specific threshold
and displayed side-by-side to assess the evolution of the crop. The
strings can be re-interpreted by the turtle step-by-step to generate
an animation of the evolution of the crop. It is possible to view the
entire animation at once or step through it.

5 CASE STUDIES
We applied our methodology to two different crops, strawberry
and canola. We first present a typical scenario that motivates our
methodology in a controlled environment agriculture context, then
evaluate the results demonstrating the validity of our approach.

5.1 Application to strawberry
5.1.1 Motivation. Strawberry crops typically grown in colder out-
door climates benefit from controlled environment agriculture to
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control florescence patterns that optimize fruit yield [34]. Such
patterns, known as thyrse, are not found in other crops [24] and
require precise control of the environment through simulation to
optimize development [11]. Using our methodology, a grower can
assess the thyrse architecture of simulated crops.

5.1.2 Crop phenological model. We simulated the phenology of a
strawberry of the Albion cultivar using a Python simulator devel-
oped for the digital twin of our industrial partner [5]. The model
outputs the plant age in days 𝛼 , fruit yield 𝑦𝑖𝑒𝑙𝑑𝑓 𝑟𝑢𝑖𝑡 , and organ
counts for 𝜂𝑓 𝑟𝑢𝑖𝑡 fruits and 𝜂𝑙𝑒𝑎𝑓 leaves, but fails to characterize
the thyrse structure. The experiment was conducted over a growing
season of 8 weeks.

The operation of the controlled environment system depends on
measurable attributes such as leaf and fruit counts. By optimizing
the thyrse pattern, growers can effectively produce an adequate
ratio of leaves to fruits that lead to the least energy waste since too
many leaves hamper fruit yields, and too many fruits hamper the
health of the crop. Thus, the phenological model must be augmented
with a morphological model to provide branching information to
our stakeholders.

5.1.3 Crop morphological model. We simulate the morphological
development of the crop using the VLab model developed by Lembi-
nen et al. [24], which models the dynamics of thyrse architectures
of woodland strawberries. By varying the model parameters, it is
possible to capture different strawberry genotypes that differ in
fruit and leaf organogenesis.

In total, we vary eight parameters to characterize the growth
of thyrses, with 1012 possible combinations of parameters in our
search space. Figure 6 showcases the parameter file used by VLab
at every evaluation of our genetic algorithm.

1 #define MAX_AGE 8

2 #define VEG_INIT 0.61

3 #define VEG_HALF_LIFE 0.25

4 #define TH_MONO 0.11

5 #define TH_SYM 0.8

6 #define TH_DIFF -0.05

7 #define PLASTOCHRON 0.42

8 #define BRACT_TH_1 0.5

9 #define BRACT_TH_2 0.5

Figure 6: Example VLab strawberry parameter file, only opti-
mization parameters are shown

5.1.4 Translation to abstract state. The phenological model outputs
the average number of fruits and leaves for the strawberry crop,
so we did not need to use a translation heuristic to derive our ab-
stract morphological state from the simulated mass. To distinguish
the number of leaves between fully mature leaves (i.e., tri-lobe)
and growing leaves (i.e., single-lobe), we assumed that growing
conditions were adequate to support 66% of leaves to maturity.
We obtain the following translation from the phenological to the

abstract morphological state:

𝑛𝑓 𝑟𝑢𝑖𝑡 = 𝜂𝑓 𝑟𝑢𝑖𝑡

𝑛𝑠𝑖𝑛𝑔𝑙𝑒 = ⌈0.33 × 𝜂𝑙𝑒𝑎𝑓 ⌉
𝑛𝑡𝑟𝑖 = ⌊0.66 × 𝜂𝑙𝑒𝑎𝑓 ⌋
𝑎𝑔𝑒 = 𝛼

5.1.5 Abstract state metamodel. The abstract state for the straw-
berry captures the observable measurements of interest in a vertical
farming context, in our case, the number of single and triple-lobed
leaves and the fruit count. The state also defines the age of the crop
which we want to generate. In conformity with the metamodel,
we manually apply the translation to the crop simulation results
to generate the abstract morphological states for our strawberry
cultivars:

Listing 1: Abstract morphological states of the simulated
Albion cultivar
1 Strawberry(

2 SingleLobe: 3

3 TriLobe: 6

4 Fruits: 8

5 Age: 8

6 )

5.1.6 Validation. To validate our approach, we generated the con-
crete morphological states of the Albion strawberry cultivar. The
final simulated phenological state was exported to text and then
translated into an abstract morphological state using our translation
heuristic. Next, we refined the model using our optimization-based
transformation to generate the concrete morphological state.

Genetic algorithms are stochastic and, at best, provide solutions
lying on the Pareto front, which may be too computationally expen-
sive to explore due to its size and variance. As such, we evaluate
aggregate results from parallel executions by taking the mean ab-
solute distance between the generated crop and the objective and
the average hypervolume, as shown on Table 1. We compare the
NSGA-III algorithm to random search to assess the applicability of
our approach.

We parameterized the reference point set of NSGA-III by apply-
ing 15 divisions of the normalized hyperplane to preserve solution
diversity. As our search space contains 1012 possible configurations,
and as the evaluation of each solution can be computationally ex-
pensive, we kept a population size of 100 solutions evolved over
100 generations. To compare our results to random, we sampled
the 𝑛 best solutions generated by random, where 𝑛 is the size of
the NSGA-III solution set.

We observe that our approach outperforms simple random search
of morphological configurations. Every execution of the genetic
algorithm yielded optimal representations in terms of fruits and
tri-lobe leaves, while random sometimes fails to generate such so-
lutions. As the random algorithm still found at least one optimal
configuration in almost every execution, the hypervolumes of both
algorithms are nearly identical. Since our solution sets lack diversity,
the hypervolume is not a good indicator to evaluate our approach;
instead, we pay attention to convergence time. The results in Fig-
ure 7 show that, on average, NSGA-III converges to an optimum in
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Algorithm Avg. solution fruit Avg. solution single-Lobe Avg. solution tri-Lobe Avg. hypervolume

NSGA-III 0 +/- 0 3 +/- 0 0 +/- 0 0.25 +/- 0
Random 0.11 +/- 0.25 3 +/- 0 0.86 +/- 0.42 0.24 +/- 0.014

Table 1: Strawberry optimization algorithm results

50 generations, while random sometimes fails to converge. Conver-
gence is an important aspect of our methodology, and we expand
on that aspect in the discussion. An example of optimal strawberry
representation is shown on Figure 8.

Figure 7: Population Comparison between NSGA-III and Ran-
dom

Figure 8: Optimal morphology of the strawberry, missing 3
single-lobed leaves. Results are shown for weeks 2 to 8.

5.2 Application to canola
5.2.1 Motivation. Canola crops can hardly be grown indoors due
to their harvesting method and exhibit beneficial interactions with
their planted soil microbiome [28]. However, growers typically
fertilize their soils with nitrogen to increase their yield, which
may negatively impact the soil quality [6]. The growth of canola
follows a well-defined sequence of vegetative and reproductive

phases, the lengths of which depend on the growing conditions.
The two phases are further split into seven stages [1]: germination,
leaf production, stem elongation, flower production, flowering, pod
development, and seed development. Most of the canola harvestable
yield starts to form in the pod development stage, where 40 − 55%
of flowers transform into pods. A particularity of canola is that
the pods contribute to the photosynthesis process, thus the growth
dynamics of the crop are directly affected by the number of flowers.
By controlling the crop to produce a specific amount of flowers and
using specific fertilizer treatments that benefit the production of
pods, it is possible to increase the total harvestable crop yield.

5.2.2 Crop phenological model. We simulated the development of
two canola harvests, one with no soil fertilizer treatment (0N) and
one with fertilizer treatment of 100𝑘𝑔ℎ𝑎−1 nitrogen (100N), based
on the experiments used to develop the CSM-CROPGRO-Canola
model [20] provided by DSSAT. The experiments were conducted
in 2014, where canola was planted in late May and grown over 104
days.

The model of the crop incorporates field management activities
such as fertilizer application and constant irrigation and simulates
various properties related to soil and crop development. In terms
of crop phenology, we are interested in the model results for the
number of pods per meter squared 𝜂𝑝𝑜𝑑𝑠 ·𝑚−2 with a crop density 𝑑
of 62 crops/𝑚2, which is how we evaluate yield. While the model is
able to simulate individual seed numbers, that level of granularity is
too specific for our methodology. However, the model is unable to
simulate the count of flowers, which is an important morphological
property of the crop.

5.2.3 Crop morphological model. We simulate the morphological
development of the canola crop using the VLab model developed by
Cieslak et al. [10], which models the crop architecture to generate
images for automatic data labeling. While intended for image-based
phenomics, we repurposed the model to graphically represent the
underlying canola phenological phenomena. A main limiting factor
of this model, as highlighted by its authors, is the overestimation of
organs, mostly flowers, due to the self-repeating structure of branch
developments. To palliate this, we adjusted the 𝜆𝑓 𝑙𝑜𝑤𝑒𝑟 parameter
to be 0.01, as the VLab model outputs flower counts at maturity in
the thousands. In contrast, a mature canola crop typically produces
around 50 flowers [1]. By varying the model parameters shown
on Figure 2 we alter the counts of pods and flowers to obtain the
concrete morphology.

5.2.4 Translation to abstract state. We define a translation heuristic
to convert the number of pods produced by the DSSAT model to
the number of flowers to generate the abstract morphological state
of both canola treatments. This proves challenging as we do not
have access to canola inflorescence count. Ideally, we could infer
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Listing 2: Example VLab canola parameter file, only optimiza-
tion parameters are shown
1 #define MaxPlantAge 104

2 #define VegPhytomers 20

3 #define MaxPhytomers 100

4 #define PoddingAge 90

5 #define VegPlastochron 0.18942437

6 #define RepPlastochron 0.12848748

ratios specific to certain canola genotypes or treatments with more
agronomic data. For our translation heuristic, we assumed that half
of the canola flowers turn to pods based on an agronomic rule of
thumb [1] and posed that there are twice as many flowers as there
are pods:

𝑛𝑝𝑜𝑑𝑠 = 𝜂𝑝𝑜𝑑𝑠

𝑛𝑓 𝑙𝑜𝑤𝑒𝑟𝑠 = ⌈1.5 × 𝜂𝑝𝑜𝑑𝑠 ⌉
𝑎𝑔𝑒 = 𝛼

5.2.5 Abstract state metamodel. The abstract state for the canola
represents the variables of interest, in our case, the number of flow-
ers and pods, and parameters for the age of the crop. By applying
our translation to the simulation results, we obtain the following
abstract morphological states for both canola treatments:

1 Canola(

2 Flowers: 45

3 Pods: 30

4 Age: 104

5 )
(a) 0N Canola

1 Canola(

2 Flowers: 111

3 Pods: 74

4 Age: 104

5 )
(b) 100N Canola

Figure 9: Abstract morphological states of canola with no
fertilizer (a) and fertilizer treatment (b)

5.2.6 Validation. To validate our approach in a smart agriculture
canola growing system, we generated the concrete morphologi-
cal states of two canola crops exposed to different fertilizer treat-
ments using the CSM-CROPGRO-Canola model [20] packaged with
DSSAT. The first canola crop was simulated without any fertilizer
treatment, while the other was simulated with the application of a
fertilizer with a nitrogen concentration of 100 kg.ha−1. As canola
flowers transform into pods, and as pods get replaced throughout
the canola growth cycle, we assumed that the phenological state
at the end of the growing period characterizes the final crop pre-
harvest, ignoring missing pods. We exported the phenological state
of the crop to a comma-separated value file and then translated it
manually into an abstract morphological state using our translation
heuristic. We then refined the model using our optimization-based
transformation to generate the concrete morphological state.

Similarly to the strawberry use-case, we executed our algorithm
parallel on 20 machines. The search space is smaller than for the
strawberry case study as there are 109 possible configurations. Thus,
we kept a population size of 100 evolved over 30 generations. We
use the same comparison methodology as the previous case to
compare our results, shown on Table 2.

Our results show that the solution set of the NSGA-III algorithm
is very homogeneous, while the random algorithm is highly varied.
Both algorithms fail to generate a canola crop with pods, which
limits the relevancy of the generated representation. While random
produces solutions with large variances, it is still able to find at least
one pareto-optimal configuration and achieve the same hypervol-
ume as NSGA-III. As shown on Figure 10, NSGA-III fails to converge
to a better solution than random in the case of unfertilized canola,
while it is slightly better for fertilized canola. Figure 11 shows an
example of optimal canola representation found using NSGA-III.

Figure 10: Population Comparison between NSGA-III and
Random

Figure 11: Optimal concrete morphology of the 100N canola.
Results are shown for every 20 days until 100.

5.3 Discussion
Our approach is able to generate near-optimal representations of
strawberry crop morphology based on a model of their phenology,
bridging the gap between operators of the vertical farm. Results
for canola crops were mixed, and further work on the calibration
of various components of the methodology is required to achieve
actionable representations. While LSystem models enforce the well-
formedness of crop structure, they may use abstractions to simplify
computing costs, leading to inaccurate organ counts. For instance,
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Cultivar Algorithm Avg. Pods Avg. Flower Avg. Hypervolume

0N NSGA-III 30 +/- 0 0.398 +/- 0 0.599 +/- 0.001
0N Random 30 +/- 0 6.701 +/- 3.971 0.6 +/- 0
100N NSGA-III 74 +/- 0 0.048 +/- 0 0.0133 +/- 0
100N Random 74 +/- 0 3.54 +/- 2.09 0.0133 +/- 0

Table 2: Canola optimization algorithm results

the self-repeating structure of the canola crop branching patterns
recursively creates branches with fixed amounts of flowers, getting
smaller in size until getting visually unnoticeable, which leads
to an overestimate in flower counts between a real and virtual
canola crop. This lack of fidelity between crop models and their
real counterpart is mitigated by the grower manually validating
the proposed solutions but would require further calibration of our
translation heuristic.

The generated morphologies may vary wildly in appearance and
organogenesis patterns, and it is possible that no generated mor-
phology represents the morphology of the crop in the real system.
Due to this variance and the stochasticity of our genetic algorithm,
we had to generate a lot data points to have an accurate representa-
tion of possible morphologies. As digital twins continuously evolve
in time, the state of the virtual system needs to be updated repeat-
edly. As such, the convergence speed of the optimization algorithm
must be fast enough to accurately depict the system. In its current
state, our methodology is fast enough to support what-if analyses
but is limited in its real-time usage due to the computational cost
of the L-System model evaluation.

As morphologies are not derived from sequential morphological
states but rather from the initial state of the crop, our methodology
is best suited to what-if analyses, where consistent and sequential
morphological representations are unnecessary. The agronomist
and grower can assess the desired structure of the crop and its
phenological attributes to search for optimal configurations of the
farming system through exploring the possible system state space,
which is an integral part of prescriptive digital twins for smart
farming [38].

6 RELATEDWORK
Digital twins of cyber-biophysical systems have been applied to
drug discovery [35] and livestock farming [30]. In smart agriculture,
digital twin prototypes have been developed for the identification of
diseases from images [37] or the harvesting of potatoes [15]. Such
approaches either do not integrate the collaboration of multiple
stakeholders for the operation of the system, or do not model dif-
ferent abstractions of the physical entity. Prior work on the digital
twins of a strawberry vertical farming has identified key challenges
and learned lessons on the topic [11], where authors highlight the
importance of domain-specific tools the digital twin operators.

Recent approaches in crop modeling have focused on the image-
based phenomics calibration of models [10] and the extraction of
morphological attributes using multiple detection methods [43].
Image-based phenomics for the inference of crop maturity stages
have been applied to wheat [19] and rice [40], but the inferred
phenological attributes are not sufficient to operate a vertical farm.

Thus, models of phenology and morphology must be coupled to
capture the behavior of crops within smart farming digital twins.

7 CONCLUSION
In this paper, we present a methodology to generate 3D visual-
izations of crop morphology from a model of crop phenology for
the operation of a smart agriculture prescriptive digital twin. The
methodology aims to convey domain-specific representations of a
crop to agronomists and growers for the operation and analysis of
the vertical farm. Our proposed transformation chain enables the
design-space exploration of possible concrete crop morphological
states on the basis of their abstract morphology, which is inferred
from a phenological model. This enables the execution of what-if
analyses within the digital twin, able to prescribe desirable crop
states according to the agronomist and grower who operates the
system.

We applied our methodology to two case studies: a strawberry
crop within a vertical farming system and a field-grown canola crop.
Our approach can infer possible crop morphologies based on crop
phenological models with mixed results. In the case of strawberry
crops, we show that our model is able to converge to an optimal
morphology, while that is not the case for canola. Further work
on the calibration of heuristic transformations between models of
phenology and abstract morphology and of morphological models
is required to apply our methodology to different smart farming
environments.

The main limitation of our methodology for digital twins is the
generation of crop morphologies, which always start from initial
planting. To palliate this, we aim to extend our model refinement
method to take into account prior morphological states of the crop
to generate results that aremorphologically consistent through time.
These intermediate concrete morphological states would enable
the extension of our methodology to real-time monitoring digital
twins, and is a step towards an autonomous digital twin.
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